Hacker News new | past | comments | ask | show | jobs | submit login

> You're presuming that all reads occur after the system has quiesced.

It sure looked like they did, but maybe I misread the code.

> This is not always the case.

Even if that weren't the case, you might check out the probabilities on your birthday problem. What you've got is effectively a calendar with 100 million days (microseconds in the benchmark's 100 seconds) and 5 people (5 writes to the same record). You've managed to end up with those 5 people sharing a birthday well over 1% of the time.

> I'm just trying to keep folks honest about what their systems actually provide

I appreciate that you've found an interesting corner case that I'd not considered.

Actually, it's not that I hadn't considered it. When creating client side timestamps I do tend to think about this scenario, but with server side timestamps, I tend to think of it much like I think of collisions on Type 1 UUID's, but in truth the probabilities are higher.

I do think Cassandra ought to consider either a) using Type 1 UUID or similar strategies to make the risk of these collisions all but ridiculous or b) when resolving ties in the timestamps on cells by choosing a winning node or thread or something other than the value in the cell, but rather tied to the update operation. That would avoid this scenario in a fashion more fitting with the rest of the semantics of the system.

> give them tools to analyze those constraints

I think unfortunately in this case the analysis of those constraints is flawed.




Guidelines | FAQ | Lists | API | Security | Legal | Apply to YC | Contact

Search: