> Abstract: [...] Here, we report simultaneous tunneling spectroscopy and transport measurements of magic-angle twisted trilayer graphene. This approach allows us to identify two coexisting V-shaped tunneling gaps with different energy scales: a distinct low-energy superconducting gap that vanishes at the superconducting critical temperature and magnetic field, and a higher-energy pseudogap. The superconducting tunneling spectra display a linear gap-filling behavior with temperature and magnetic field and exhibit the Volovik effect, consistent with a nodal order parameter. Our work suggests an unconventional nature of the superconducting gap and establishes an experimental framework for multidimensional investigation of tunable quantum materials.
> Abstract: [...] Here, we report simultaneous tunneling spectroscopy and transport measurements of magic-angle twisted trilayer graphene. This approach allows us to identify two coexisting V-shaped tunneling gaps with different energy scales: a distinct low-energy superconducting gap that vanishes at the superconducting critical temperature and magnetic field, and a higher-energy pseudogap. The superconducting tunneling spectra display a linear gap-filling behavior with temperature and magnetic field and exhibit the Volovik effect, consistent with a nodal order parameter. Our work suggests an unconventional nature of the superconducting gap and establishes an experimental framework for multidimensional investigation of tunable quantum materials.