I agree with the sentiment of this. I think our obsession with innate mathematical skill and genius is so detrimental to the growth mindset that you need to have in order to learn things.
I've been working a lot on my math skills lately (as an adult). A mindset I've had in the past is that "if it's hard, then that means you've hit your ceiling and you're wasting your time." But really, the opposite is true. If it's easy, then it means you already know this material, and you're wasting your time.
> I agree with the sentiment of this. I think our obsession with innate ~~mathematical~~ skill and genius is so detrimental to the growth mindset that you need to have in order to learn things.
I strongly believe that the average human being can be exceptional in any niche topic given enough time, dedication and focus.
The author of the book has picked out mathematics because that was what he was interested in. The reality is that this rule applies to everything.
The belief that some people have an innate skill that they are born with is deeply unhelpful. Whilst some people (mostly spectrum) do seem have an innate talent, I would argue that it is more an inbuilt ability to hyper focus on a topic, whether that topic be mathematics, Star Trek, dinosaurs or legacy console games from the 1980’s.
I think we do our children a disservice by convincing them that some of their peers are just “born with it”, because it discourages them from continuing to try.
What we should be teaching children is HOW to learn. At the moment it’s a by-product of learning about some topic. If we look at the old adage “feed a man a fish”, the same is true of learning.
“Teach someone mathematics and they will learn mathematics. Teach someone to learn and they will learn anything”.
Caveat here is that "talent" and "dedication" is linked to speed at least in the beginning. For instance, any student can learn calculus given enough time and advice even starting from scratch. However, the syllabus wants all this to happen in one semester.
This gives you vicious and virtuous cycles: Students' learning speed increases with time and past success. So "talented" students learn quickly and have extra time to further explore and improve, leading to further success. Students who struggle with the time constraint are forced to take shortcuts like memorizing "magic formulas" without having time to really understand. Trying to close that gap is very hard work.
Thank you for the insight that academic (in a very broad sense) bulk-fixed-time approach does in fact produce both of the cycles, and the gap indeed only widens with time (speaking from personal experience, especially from my life as an undergrad student).
Reminds me of my personal peeve that "studying" should not be "being taught", studying is pursuit of understanding, "being taught" is what happens in primary school (and I'm aware I'm simplifying here).
I would say that you could generalize this even further outside of education. A few early successes in life can greatly accelerate one's trajectory, while early failures could set one many years back. And this happens independently of whether those events are due to skill or luck.
Indeed, speed is often read as "smarts" whereas I would maintain it's much more often "preparation". We can't on one hand believe in the plasticity and retrainability of the mind, while simultaneously believing that speed is something only a few are born with. On the nature/nurture scale, I think it's 20/80 or so - but prodigies and geniuses have an interest that keeps them thinking and learning 10x or 100x more than other kids, and a little bump that lets them get started easier and therefore much earlier.
This sets them up for fantastic success very quickly. [1] shows a great example of this.
I'm fond of saying "You can do anything you want, but wanting is the hard part", because to truly be a grandmaster, genius-level mathematician, olympic athlete, etc, requires a dedication and amount of preparation that almost nobody can manage. Starting late, with emotional baggage, kids, and having to spend 5 years relearning how to learn? Forget it.
> I'm fond of saying "You can do anything you want, but wanting is the hard part", because to truly be a grandmaster, genius-level mathematician, olympic athlete, etc, requires a dedication and
I was having a problem agreeing with this subthread, and I have you to thank for putting it into words that I can finally formulate my disagreement against.
Have you never met one of those people for whom they did not need to "want"? They could literally phone it in and still do better than anyone else, no matter how dedicated they were. Even should practice/study be necessary for them, they benefited from it to some absurd proportion that I couldn't even guess to quantify. I've known more than one of these people.
I think most believe they don't exist for two reasons. The first is the ridiculous number of television shows and movies that depict motivation as being the key to success. We're just inundated with the (unsupported by evidence) that this is the means to extraordinary genius. Second, I would say that this is the most comforting theory. "Why yes, I could have been a gifted whatever or a talented something-or-other if I had put the time in, but I chose this other thing instead."
Maybe some would say we all need to believe this, that a society that doesn't believe in it is harsher or more unkind.
I think I have met those folks. Maybe not. And you're welcome!
They're just quick. But the ones I've met, at least, are quick to make associations. When I really dig and ask them to explain themselves or a concept, they usually make analogies to things they know, but I don't. Then I have to go learn that thing. Then they try the analogy again, but I haven't fully learned it from years of making analogies about it.
Years of grad school experience was painful like this, until I got to a point 10 years after grad school, after a PhD, and well into research, that I "just got" things (in my subfield) as well. It's these experiences that made me feel that it's 80% preparation and perspiration (both of which are dominated by time), and 20% "other" mythology. Don't get me wrong, that 20% is what makes a 2 year old read earlier than others, and getting started reading at 2 (and continuing it!) for 4 years before starting school will make you light years ahead of your peers. The same goes for chess, math, etc etc. There is something legendary about Oppenheimer learning enough dutch in 6 weeks to deliver a lecture. Or perhaps learning to translate his lecture and memorizing it. Who knows.
Do we really believe there's a magical "genius" such that they can do anything? No, so what are the limits to their genius? The limits are defined by what they are a genius at. This is a tautological definition.
I'm not saying "Anyone at any time can become a genius at anything". I'm saying "If you take a kid, start early, and cultivate them just right so that you have time to realize compounding effects, - you can let them grow into basically anything" (probablistically speaking - there are learning disabilities and physical issues etc).
> I think most believe they don't exist for two reasons.
I add third (okay, 2b) - because the pain of coming up with the fact other people are better than you at a deep, fundamental level is too overwhelming.
Bobby Fisher won his first US Championships at 14 against people who had been playing chess longer than he had been alive. Suggesting they didn't want it more, or practice more than some kid is silly.
"We can't on one hand believe in the plasticity and retrainability of the mind, while simultaneously believing that speed is something only a few are born with."
Sure we can, the initial orientation of neurons differs between people, so some people need less "plasticity and retrainability" to be good at a task. Plasticity is physical characteristic like height and varies between people.
Initial speed usually isn't that important, but speed of learning is important and makes the difference between possible and impossible within a human lifetime.
I think there's a probabalistic argument I'm making that's more in line with the article.
Yes - there will be 10x-ers. And that group will have a 10x-er iside it, and so on given exponential dropoff of frequency of talent. Bobby Fisher is a few std dev above even the best, perhaps.
Generally speaking, "You can do anything you want, but wanting (enough, and naturally) is the hardest part" might need a three standard deviation limit.
Have you heard the phrase: Being average among those who practice makes you 9X% among the population? I think that's what I'm saying - you can be a top performer if you dedicate yourself, especially early enough, but almost nobody will.
I agree with you. I don’t think I’m naturally gifted at much (I’m just average), but I was taught stubborn hard work pretty early on. Unfortunately it took me until my 20s to figure out I could be athletic if I applied that hard work. I could also be good at programming doing the same. I’ve met people who are truly gifted and it’s amazing, but I’m pretty decent at the things I worked hard at.
"Initial speed usually isn't that important, but speed of learning is important and makes the difference between possible and impossible within a human lifetime."
Likely so, but is suggest that personality, drive and motivation are also very important factors. I know from experience that stuff I had little interest in as a youngster and that I've still little in I still know little about.
Yes, my interests have grown and broadened over the years but simply I regard some stuff so irrelevant to my life that it's not worth a second thought and I am much better off applying my limited number of neurons to matters of greater importance and enjoyment.
Of course, no one has the luxury of just learning about what one finds interesting and or enjoyable, life's knocks and experiences along with utilitarian-like imperatives force one to learn stuff they'd rather not know about.
> I strongly believe that the average human being can be exceptional in any niche topic given enough time, dedication and focus.
I respectfully, but strongly, disagree. There's a reason most NBA players are over 2 meters tall, and one does not become taller with time, dedication nor focus.
It might be different for intellectual skills but I am not that sure.
Almost anyone can become decent at almost anything though. Which is good already!
> I respectfully, but strongly, disagree. There's a reason most NBA players are over 2 meters tall, and one does not become taller with time, dedication nor focus.
Being tall isn't a skill. I suspect you could be skillful enough at basketball to overcome the hight disadvantage. However, I think most people who might become that skillful see the high disadvantage (plus the general difficulty of becoming a pro basketball player) and take a different path through life. It's also possible that the amount of time that would be needed to grow your skill past the height disadvantage is too long, so it's not feasible to do it to gain a position in the NBA.
It's a matter of the definition. The general factor of intelligence, which is measured through various somewhat lossy proxies like IQ tests, is exactly the degree to which someone exceeds expectation on all cognitive tasks (or vice versa).
The interesting finding is that this universal correlation is strong, real, and durable. Of course people in general have cognitive domains where they function better or worse than their g factor indicates, and that's before we get into the fact that intellectual task performance is strongly predicated on knowledge and practice, which is difficult to control for outside of tests designed (successfully, I must add) to do so.
Height is one physical attribute that helps, and professional players are mostly above average height for a reason. But also hand-eye coordination and fast-twitch muscles help even more. Many basketball players are very explosive athletes, because it's a sport with a relatively small play area and lots of quick movements are needed.
Track and swimming are where innate physical attributes have the most obvious benefits. Michael Phelphs had the perfect body for swimming. There is no amount of trainingg that 99.999% of the population could do to get close to what Usain Bolt ran. Most humans could not train to run under 4 minutes in a mile or under 2:30 in a marathon. They just don't have the right muscular and cardiovascular physiology.
Team sports are of course more complicated as other qualities come into play that aren't as directly physiological.
> Most humans could not train to run under 4 minutes in a mile or under 2:30 in a marathon.
Of course, but I don't think anyone was seriously suggesting that. The vast majority of humans can become pretty good at swimming though. And that was my interpretation of the original claim about cognitive tasks, mathematics, etc.
Since we are being pedantic, your statement may be true but it is unsupported by the data you presented. To make it simple, let's talk about the imaginary basketball league with four players, of unit less heights of 4, 4, 4, and 1. The average height is 3.25, yet 3/4 the players are taller than average.
A paid promotion of International Median is not Average Association.
Seems like he has more than the average number of legs as well.
The fact that he has a wiki page, and that many folks with born without or who have lost legs (~500,000/year Americans experience limb loss or are born with a limb difference https://amputee-coalition.org/resources/limb-loss-statistics...) do not, suggest that the number of people with < 2 is far greater than the number of people with > 2. So the average is still less than 2.
For better or worse, number of legs (or number of arms) is canonical example people use to demonstrate the statistical principal a significant majority of a population can be above average of some metric.
Simpson's Paradox[0] is the reason people are so easily seduced by the tempting, but dead wrong, illusion that humans are in any sense equal in their innate capacity for anything.
Because it turns out that, in the NBA, height does not correspond with ability! This of course makes sense, because all the players are filtered by being NBA professional basketballers. A shorter player simply has more exceptional ability in another dimension, be that dodging reflex, ability to visualize and then hit a ball trajectory from the three point line, and so on. Conversely, a very tall player is inherently useful for blocking, and doesn't have to be as objectively good at basketball in order to be a valuable teammate.
Despite this lack of correlation, when you look at an NBA team you see a bunch of very tall fellows indeed. Simpson's Paradox.
We see the same thing in intellectual pursuits. "I'm not nearly as smart as the smartest programmer I know, but I get promoted at work so I must be doing something right. Therefore anyone could do this, they just have to work hard like I did". Nope. You've already been selected into "professional programmer", this logic doesn't work.
So you're saying success at maths isn't an inbuilt ability. Instead, it depends on an (inbuilt) ability to hyper focus... Which you are just born with?
Not even that. It depends on the learned ability to stop pushing yourself when your focus is wavering. That's how you develop aversion towards the topic. Let your natural curiosity draw you to particular topics (that's why you might have a winding road through the subject).
parent comment was a bit tounge-in-cheek but I'll continue the sentiment: You're saying that the curiosity is "natural" hence one is either born with it or not. I think that there is no way around the fact that it will be hard and uncomfortable to mimic the progress of someone that has an innate inclination towards a subject (be it talent or focus or curiosity) artificially.
Hey, that doesn't have to be what "natural curiosity" means. Besides which it makes no sense to say people are born with complex interests. I mean, OK, your genes might incline you a certain way, but that's not the same thing.
Being interested in a subject is massively helpful to learning it. But interest arises circumstantially, it's an emotion. The grim reality that it would be really useful to you to learn a certain subject does not necessarily make you interested in the subject, unfortunately. (Perhaps "financially interested", but that's something else.)
I think there is some natural inclination towards abstract thinking versus more grounded in reality, just judging based on kids I know. Some of them really enjoy playing with ideas in their heads, some enjoy playing with things they can touch more. It seems likely that those different attractions would express themselves in how much they practice different things as time goes on.
I was talking about curiosity in general not curiosity about something in particular. We are naturally inquisitive to the point we have to be restrained by our parents. The problem is some of the restraints are based on the fears of our parents and not on actual dangers. Also, it's hard to develop an appreciation for something when it's forced fed to you.
> You're saying that the curiosity is "natural" hence one is either born with it or not.
Why does curiosity being natural necessarily mean some people are born without it? It could also mean everyone (or every average human) is born with it, and overtime it gets pushed out of people.
I think the case you mentioned is explained by an idea covered in attachment theory. Children explore when they feel safe and secure. Safety and security come from the caregivers, the parents. When that is absent, because the parents' emotional state makes the children feel insecure, then the children are restrained by their own emotions.
>I strongly believe that the average human being can be exceptional in any niche topic given enough time, dedication and focus.
And this also gives the proponent (you in this case) an excuse to blame a person for not focusing hard enough or not being dedicated enough if they don't grasp the basics, let alone excel.
>The belief that some people have an innate skill that they are born with is deeply unhelpful. Whilst some people (mostly spectrum) do seem have an innate talent, I would argue that it is more an inbuilt ability to hyper focus on a topic, whether that topic be mathematics, Star Trek, dinosaurs or legacy console games from the 1980’s.
Nonsense!
The brain you are born with materially dictates the ceiling of your talent. A person with average ability can with dedication and focus over many years become reasonably good, but a genius can do the same in 1 year and at a young age.
We have an education system which gives an A Grade if you pass the course, but 1 person may put on 5 hours a week and the other works day and night.
What makes you think that "genius" is nature and not nurture? I'd love to see the evidence for this; i'm deeply skeptical.
Edit: I don't mean to argue that there aren't genetics involved in determining aptitude on certain tasks, of course, but the assumption that genius is born and never made feels like a very shallow understanding of the capacity of man.
> I'd love to see the evidence for this; i'm deeply skeptical.
Cool, come and have a coffee with me :) I have older and younger siblings and was the one randomly blessed.
Whereas most recognised talents are associated with hard work and so there is then this visible link, I am a good example as I did the bare minimum throughout education (and beyond...).
The way my brain processes and selectively discards/stores the information it receives is very different to majority of the population. I have no control over it.
I take zero credit for any of my achievments - I regularly meet intelligent people near to retirement who have been to a tier 1 university, may have PHDs, worked 60 hours a week since they were born, been on course and what not and cannot reach the levels I can.
My nurturing was no different to siblings/peers (and was terrible!)
Note: I have my weaknesses too, but as a whole, I am exceptional. Not through effort!! Completely random - neither of my parents are intelligent and nothing up the ancestary tree as far as I know.
I am also exceptional in many ways, (some of them negative), and some of this is clearly inherited and likely genetic. I share too many innate strengths with my father and, to a lesser extent, my siblings to disagree with this. But I just don't know how you could preclude developmental factors like "when you started reading as a child", "what sort of puzzles and games you played as a child", "lack of trauma as a child", etc.
I don’t know if I agree. Grad school was profoundly humbling to me because it really showed me that there are a LOT of people out there that are just much much better than me at math. There are different levels of innate talent.
The boostrap skill is the ability to obsess over something. To focus and self-reward on anything is a heaven sent. Good thing we do not medicate that if we are unable to get that energy on the road, that base skill.
I've had some success converting people by telling them others had convinced them they were stupid. They usually have one or two things they are actually good at, like a domain they flee to. I simply point out how everything else is exactly like [say] playing the guitar. Eventually you will be good enough to sing at the same time. Clearly you already are a genius. I cant even remember the most basic cords or lyrics because I've never bothered with it.
I met the guitar guy a few years later outside his house. He always had just one guitar but now owned something like 20, something like a hundred books about music. Quite the composer. It looked and sounded highly sophisticated. The dumb guy didn't exist anymore.
Intellect is like a gas, it will expand to fill its container. The container, in humans, is epigenetic and social — genetics only determines how hot or cold your gas is, ie how fast and how fluidly it expands, but you’re taught your limits — it’s best to see stupid as not how limited you are relative to other but what limits you have now and may abandon in the future.
That said, some people received a smaller starting container, and might need some help cracking it. That’s the work of those who think they’ve found a bigger one.
The inborn part is how quickly you get results (good or bad). Stupidity is the results.
If we spent 50% of time thinking productively - inborn thinking speed would matter. But in my estimate even 5% is generous.
So it matters far more what kind of feedback you have to filter out the wrong results, and how much time you spend thinking - than how quickly you can do it.
> The belief that some people have an innate skill that they are born with is deeply unhelpful.
In practice your views result in stinting access of non-existent (in your opinion) talented children to a faster education track. They don't exist therefore they don't need different treatment (finer points get lost when the idea disseminates). Quite a hot theme in American education two (or so) years ago.
Math is a stepping stone to critical thinking skills. And while one can probably learn those skills in any way, math forces you to learn those skills by learning the method of writing proofs. No other field forces you to push your critical thinking skills to the limit that math does.
> Whilst some people (mostly spectrum) do seem have an innate talent
I think the only thing in autism that I'd call an innate talent is detail-oriented thinking by default. It'd be the same type of "innate talent" as, say, synesthesia, or schizophrenia: a side effect of experiencing the world differently.
> a side effect of experiencing the world differently
A side effect for which there is a substantial, lifelong, and most importantly wide cost, even if it occasionally confers usually small, usually fleeting, and most importantly narrow advantage.
At such cost with such narrow advantage, why has it persisted so pervasively? I would counter that the advantage is wider and the cost narrower than your current value system is allowing you to accept.
It is the sum of costs and advantages that lead to reproductive success. The trait is still here and still prevalent meaning people are still getting laid and starting families and presumably leading fulfilling lives.
As long as an organism isn't performing too badly, it stays in the gene pool. It can persist and even share its genes more broadly, if in diluted form, to the other more successful organisms. And then some of those mixed-genes organisms may occasionally express more strongly, but again not enough to affect reproductive success across the population.
Yes, there is a significant cost to being built differently regardless of perceived advantages (by one's self or others). For example, as an autistic, I have to cope with finding interaction with non-autistics quite difficult for me, even if detail-oriented thinking can make certain tasks seem easier to me.
> I agree with the sentiment of this. I think our obsession with innate mathematical skill and genius is so detrimental to the growth mindset that you need to have in order to learn things.
I would argue something different. The "skill" angle is just thinly veiled ladder-pulling.
Sure, math is hard work, and there's a degree of prerequisites that need to be met to have things click, but to the mindset embodied by the cliche "X is left as an exercise for the reader" is just people rejoicing on the idea they can needlessly make life hard for the reader for no reason at all.
Everyone is familiar with the "Ivory tower" cliche, but what is not immediately obvious is how the tower aspect originates as a self-promotion and self-defense mechanism to sell the idea their particular role is critical and everyone who wishes to know something is obligated to go through them to reach their goals. This mindset trickles down from the top towards lower levels. And that's what ultimately makes math hard.
Case in point: linear algebra. The bulk of the material on the topic has been around for many decades, and the bulk of the course material,l used to teach that stuff, from beginner to advanced levels, is extraordinarily cryptic and mostly indecipherable. But then machine learning field started to take off and suddenly we started to see content addressing even advanced topics like dimensionality reduction using all kinds of subspace decomposition methods as someting clear and trivial. What changed? Only the type of people covering the topic.
I saw a lot of this when I went to college for engineering, some professors had this ability (or willingness) to make hard things simple, and others did the opposite, it was the same with the books, I dreaded the "exercise for the reader" shit, I don't think I ever did any of those, so those were all proofs I never got.
I think the ML people want to get (a narrow band) of stuff done and ivory towered people want to understand a prove things. ML is applied mathematic. Both are needed.
> I think the ML people want to get (a narrow band) of stuff done and ivory towered people want to understand a prove things. ML is applied mathematic. Both are needed.
I don't agree. First of all, ladder-pulling in math is observed at all levels, not only cutting-edge stuff. Secondly, it's in applied mathematics where pure math takes a queue onto where to focus effort. See how physics drives research into pure math.
> A mindset I've had in the past is that "if it's hard, then that means you've hit your ceiling and you're wasting your time." But really, the opposite is true. If it's easy, then it means you already know this material, and you're wasting your time.
It’s a well-established effect in pedagogics that learning vs. difficulty has a non-monotonic relationship, where you don’t learn efficiently if the material is either too hard or too easy compared to your current level. There is an optimum learning point somewhere in-between where the material is “challenging” – but neither “trivial” nor “insurmountable” – to put it that way.
I cannot agree. It's just "feel-good thinking." "Everybody can do everything." Well, that's simply not true. I'm fairly sure you (yes, you in particular) can't run the 100m in less than 10s, no matter how hard you trained. And the biological underpinning of our capabilities doesn't magically stop at the brain-blood barrier. We all do have different brains.
I've taught math to psychology students, and they just don't get it. I remember the frustration of the section's head when a student asked "what's a square root?" We all know how many of our fellow pupils struggled with maths. I'm not saying they all lacked the capability to learn it, but it can't be the case they all were capable but "it was the teacher's fault". Even then, how do you explain the difference between those who struggled and those who breezed through the material?
Or let's try other topics, e.g. music. Conservatory students study quite hard, but some are better than others, and a select few really shine. "Everyone is capable of playing Rachmaninov"? I don't think so.
So no, unless you've placed the bar for "mathetical skill" pretty low, or can show me proper evidence, I'm not going to believe it. "Everyone is capable of..." reeks of bullshit.
Not the original poster, but I want to push back on one thing -- being capable of something and being one of the best in the world at something are hugely different. Forgive me if I'm putting words in your math -- you mentioned "placing the bar for mathematical skill pretty" low but also mentioned running a sub-10s 100m. If, correspondingly, your notion of mathematical success is being Terence Tao, then I envy your ambition.
I do broadly agree with your position that some people are going to excel where others fail. We know there trivially exist people with significant disabilities that will never excel in certain activities. What the variance is on "other people" (a crude distinction) I hesitate to say. And whatever the solution is, if there is even a solution, I'd at least like for the null hypothesis to be "this is possible, we just may need to change our approach or put more time in".
On a slightly more philosophical note, I firmly believe that it is important to believe some things that are not necessarily true -- let's call this "feel-good thinking". If someone is truly putting significant dedicated effort in and not getting results, that is a tragedy. I would, however, greatly prefer that scenario to the one in which people are regularly told, "well, you could just be stupid." That is a self-fulfilling prophecy.
Not really. There's nothing inherently special about people who dedicated enough time to learn a subject.
> "Everybody can do everything." Well, that's simply not true. I'm fairly sure you (yes, you in particular) can't run the 100m in less than 10s, no matter how hard you trained.
What a bad comparison. So far in human history there were less than 200 people who ran 100m in less than 10s.
I think you're just reflecting an inflated sense of self worth.
> Not really. There's nothing inherently special about people who dedicated enough time to learn a subject.
"You didn't work hard enough." People really blame you for that, not for lacking talent.
> So far in human history there were less than 200 people who ran 100m in less than 10s.
And many millions have tried. There may be 200 people who can run it under 10s, but there are thousands that can run it under 11s, and hundreds of thousands that can run it under 12s. Unless you've got clear evidence that those people can actually run 100m in less than 10s if they simply try harder, I think the experience of practically every athlete is that they hit a performance wall. And it isn't different for maths, languages, music, sculpting (did you ever try that?), etc. Where there are geniuses, there also absolute blockheads.
That's not to say that people won't perform better when they work harder, but the limits are just not the same for everyone. So 'capable of mathematical reasoning' either is some common denominator barely worth mentioning, or the statement simply isn't true. Clickbait, if you will.
I'm the author of what you've just described as clickbait.
Interestingly, the 100m metaphor is extensively discussed in my book, where I explain why it should rather lead to the exact opposite of your conclusion.
The situation with math isn't that there's a bunch of people who run under 10s. It's more like the best people run in 1 nanosecond, while the majority of the population never gets to the finish line.
Highly-heritable polygenic traits like height follow a Gaussian distribution because this is what you get through linear expression of many random variations. There is no genetic pathway to Pareto-like distribution like what we see in math — they're always obtained through iterated stochastic draws where one capitalizes on past successes (Yule process).
When I claim everyone is capable of doing math, I'm not making a naive egalitarian claim.
As a pure mathematician who's been exposed to insane levels of math "genius" , I'm acutely aware of the breadth of the math talent gap. As explained in the interview, I don't think "normal people" can catch up with people like Grothendieck or Thurston, who started in early childhood. But I do think that the extreme talent of these "geniuses" is a testimonial to the gigantic margin of progression that lies in each of us.
In other words: you'll never run in a nanosecond, but you can become 1000x better at math than you thought was your limit.
There are actual techniques that career mathematicians know about. These techniques are hard to teach because they’re hard to communicate: it's all about adopting the right mental attitude, performing the right "unseen actions" in your head.
I know this sounds like clickbait, but it's not. My book is a serious attempt to document the secret "oral tradition" of top mathematicians, what they all know and discuss behind closed doors.
Feel free to dismiss my ideas with a shrug, but just be aware that they are fairly consensual among elite mathematicians.
A good number of Abel prize winners & Fields medallists have read my book and found it important and accurate. It's been blurbed by Steve Strogatz and Terry Tao.
In other words: the people who run the mathematical 100m in under a second don't think it's because of their genes. They may have a hard time putting words to it, but they all have a very clear memory of how they got there.
This power law argument immediately reminds me of education studies literature that (contrary to the math teachers in this thread) emphasize that mathematical ability is learned cumulatively, that a student's success feeds on itself and advances their ability to grasp more difficult material.
As for my own half-baked opinion, I want to say that the Church-Turing Thesis and Chomsky's innate theory of cognition have something to add to the picture. Homo sapiens as a species essentially has the capacity to think analytically and mathematically; I want to argue this is a universal capacity loosely analogous to the theory of universal Turing machines. So what matters is people's early experiences where they learn how to both practice and, critically, to play, when they learn difficult ideas and skills.
Also, as an amateur pianist, most people don't know that modern piano teaching emphasizes not fixed limits of the student but that many students learn the wrong techniques even from well-meaning piano coaches. Just the other day I was watching a recent YouTube Julliard-level masterclass where the teacher was correcting a student on her finger playing technique, presumably this student had been taught the wrong technique since childhood. With music or sports a coach can visually see many such technique problems; with math teaching it of course harder.
This beats TFA. Interesting relation between cumulativeness and distribution ("Yule process"). But how does this explain variation is how quickly children pick up maths - would you argue it's due to prior exposure e.g. parental tutoring?
There is math the abstract field and math the concrete example you're working on.
Current education is _extremely_ biased to concrete arithmetic and a bit of algebra. If you have a predisposition to either you will do extremely well. If you don't you won't.
Those have little to do with how math is done by mathematicians.
In short: education needs to catch up to what's happened since the 1920s in maths. Parents are conservative and don't want their kids to learn something they themselves don't understand, so we're stuck with what we have until enough generations pass and 20th century math is absorbed by osmosis into the curriculum.
> document the secret "oral tradition" of top mathematician
> A good number of Abel prize winners & Fields medallists have read my book and found it important and accurate. It's been blurbed by Steve Strogatz and Terry Tao.
Sounds like people mostly living in different bubbles? What do they know about the world?
They aren't hanging out with the kids who fail in school because maths and reading and writing is to hard, and then start selling drugs instead and get guns and start killing each other.
> [they] don't think it's because of their genes
Do you think someone would tell you, if he/she thought it was?
I mean, that can come off as arrogant? Wouldn't they rather tend to say "it was hard work, anyone can do it" and prioritize being liked by others
> Pareto-like distribution like what we see in math
Unclear to me what you have in mind. If there's a graph it'd be interesting to have a look? I wonder whats on the different axis, and how you arrived at the numbers and data points
> Sounds like people mostly living in different bubbles? What do they know about the world?
Well, they do know something about math — in particular that it requires a certain "attitude", something that no-one told them about in school and they felt they only discovered by chance.
Starting from Descartes and his famous "method", continuing with Newton, Einstein, Grothendieck all these guys insisted that they were special because of this "attitude" and not because of what people call "intelligence". They viewed intelligence as a by-product of their method, not the other way around. They even wrote books as an attempt to share this method (which is quite hard to achieve, for reasons I explain in my book.)
Why do you bring "kids who fail in school" and "start selling drugs" into this conversation? What does it have to do with whether math genius is driven by genetics or idiosyncratic cognitive development?
And why would a mathematician be disqualified from discussing the specifics of math just because they're not hanging out with lost kids? Are you better qualified? Did you sequence the DNA of those kids and identified the genes responsible for their learning difficulties?
>> [they] don't think it's because of their genes
> Do you think someone would tell you, if he/she thought it was?
Well, an example I know quite well is mine. I was certainly "gifted" in math — something like in the top 1% of my generation, but not much above and definitely nowhere near the IMO gold medallists whom I met early in my studies.
A number of random events happened to me, including the chance discovery of certain ways to mentally engage with mathematical objects. This propelled me onto an entirely different trajectory, and I ended up solving tough conjectures & publishing in Inventiones & Annals of Math (an entirely different planet from the top 1% I started from)
My relative position wrt my peer group went through a series of well-delineated spikes from 17yo (when I started as an undergrad) to 35yo (when I quit academia), associated with specific methodological & psychological breakthroughs. I'm pretty confident that my genes stayed the same during this entire period.
And as to why I was initially "gifted", I do have some very plausible non-genetic factors that might be the explanation.
I don't claim this proves anything. But I see no reason why my account should be disqualified on the grounds that I'm good at math.
Usually, competency in one domain is presumed to make you a bit more qualified than the random person on the internet when it comes to explaining how this domain operates. Why should math be the exception?
> they do know something about math ... that it requires a certain "attitude"
Of course. That does not mean that intelligence doesn't play a (big) role.
> Starting from Descartes and his famous "method", continuing with Newton, Einstein, Grothendieck all these guys insisted that they were special because of this "attitude" and not because of what people call "intelligence"
That doesn't make sense. Back when they were active, intelligence, IQ tests and the heritability of intelligence hadn't been well studied. They didn't have enough information, like we do today: https://en.wikipedia.org/wiki/Heritability_of_IQ#Estimates"Various studies have estimated the heritability of IQ to be between 0.7 and 0.8 in adults and 0.45 in childhood in the United States."
And, evolution and genetics weren't these peolpe's domains. Does it make sense to assume they were authorities in genetics and inheritance, because were good at maths and physics?
Sometimes they were wrong about their own domains. Einstein did say "Genius is 1% talent and 99% hard work" (I can understand how it makes sense from his own perspective, although he didn't know enough about this animal species, to say that).
But he also said "God does not play dice" and was wrong about his own domain.
> Why do you bring "kids who fail in school" and "start selling drugs" into this conversation?
It was an example showing that the researchers live in bubbles.
That they're forming their believes about humans, based on small skewed samples of people. There's billions of people out there vastly different from themselves, whom they would have left out, if thinking about about others' abilities to learn.
In fact, now it seems to me that you too live in a bubble, I hope you don't mind.
> Usually, competency in one domain is presumed to make you a bit more qualified than the random person on the internet when it comes to explaining how this domain operates.
1) Maths and 2) evolution, DNA, genetics, intelligence, learning and inheritability are not the same domains.
Anyway, best wishes with the book and I hope it'll be helpful to people who want to study mathematics.
Current estimates of the "heritability" of intelligence are far, far lower than "0.7 or 0.8"; they're probably below 0.1, and that's before digging into what "heritability" means, which is not generally what people think it does.
I'd guess the person you're responding to has thought more carefully about this issue than the median HN commenter has.
They've studied men in Sweden during 40 years. From the abstract:
"We found that high intelligence is familial, heritable, and caused by the same genetic and environmental factors responsible for the normal distribution of intelligence."
"... 360,000 sibling pairs and 9000 twin pairs from 3 million 18-year-old males with cognitive assessments administered as part of conscription to military service in Sweden between 1968 and 2010 ..."
Looking at Figure 3, in that pager, about identical twins and non-identical (two-egg) twins -- I think that settles it for me.
Seems they arrive at a bit above 0.4 as heritability. Yes that's less than 0.7 - 0.8 but I wouldn't say "far far lower", and more than 0.1. Also, they're 18 years old, not adults.
> I'd guess the person you're responding to has thought more carefully about this issue than the median HN commenter has.
Well, in his reply to me, he was sort of name dropping and appealing to (the wrong) authorities, didn't make a good impression on me. Plus writing about himself, but he's a single person. -- I would have preferred links to research on large numbers of people.
> what "heritability" means, which is not generally what people think it does.
That sounds interesting. Can I guess: You mean that people believe that heritability means how likely a trait is to get inherited from parent to child? When in fact it means: (https://en.wikipedia.org/wiki/Heritability)
"What is the proportion of the variation in a given trait within a population that is not explained by the environment or random chance?"
My sibling comment (unsuprisingly) goes into more depth and with more sourcing. The 0.4 result you've cited is from 2015, which is in the phlogiston era of this science given what we've learned since 2018. As he has aptly demonstrated: his authorities are sound, and he has thought carefully about this matter --- respectfully, far more than you seem to have. That's OK! We're just commenting on a message board. I wouldn't even bring it up, except that you've decided to make his grasp on the subject a topic of debate.
> he has thought carefully about this matter --- respectfully, far more than you seem to have
He was wrong in his guesses about me and what I've read, and wrong about the quote too (see sibling comment).
> is from 2015 ... what we've learned since 2018
You're saying the graph is somehow invalid, because of newer GWAS related research?
The blog he links to looks biased to me. Are there two camps that don't get along: looking at DNA (GWAS), vs looking at twin studies etc ... yes seems so. I'll reply to both of you in another comment
I know this reply may not suffice to convince you, but unfortunately I won't be able to argue forever.
Did you ever consider the possibility that you might be the one living in a bubble?
FYI, the concept of innate talent predated IQ tests and twin studies by many millenia. Two of the authors I'm citing in my book (Descartes and Grothendieck) believed that innate talent existed and they both declared they would have loved to be naturally gifted like these or these people they knew.
You're declaring that these incredibly smart people were wrong about their own domains, which is a pretty bold claim to make. What do you have in support of this claim? A fake Einstein quote?
It's a sad fact of life that most quotes attributed to Einstein are fabricated. Next time, please check "The Ultimate Quotable Einstein", compiled by Alice Calaprice.
This may come as a shock to you, but Google page 1 isn't always a reliable resource. Nor is Wikipedia, even though it's quite often correct. As it happens, there's a pretty large "Heritability of IQ" bubble on the internet. It's active and vocal, but it's also quite weak scientifically — the page you're citing is a typical symptom, and it absolutely doesn't reflect the current scientific knowledge.
The IQ heritability claims that you're citing are based on twin studies and they have taken in serious beating in the past decade, especially in light of GWAS.
It's true that a number of people have been fooled by twin studies, most notably Steven Pinker, in Chapter 19 of the Blank Slate (did you read it?)
You see, Pinker is a linguist and apparently he isn't mathematically equipped to fully comprehend the intrinsic limitations of Bouchard's approach. Did you read Bouchard's 1990 paper on twins reared apart? Do you find it convincing? Are you aware that even The Bell Curve's Charles Murray thinks that this approach, abundantly cited by Pinker, is structurally flawed? Are you aware of the fundamental instability of IQ estimates based on twins reared together? Aren't you concerned that even a mild violation of Equal Environment Assumption, plugged into Falconer's equation, would drastically reduce the estimates?
If you don't understand what I'm talking about, if you've never read the authors and the primary research I'm citing, then it's quite likely that you're the one living in a social media bubble.
> Did you ever consider the possibility that you might be the one living in a bubble?
You're wrong about that, but you couldn't have know. I've lived in far more different places with more different people, than most people you've met.
> innate talent predated IQ tests and twin studies by many millenia
That's why I wrote it hadn't been well studied, not that it hadn't been studied at all.
> You're declaring that
Of course not. I'm not the source.
> incredibly smart people were wrong about their own domains, which is a pretty bold claim to make. What do you have in support of this claim? A fake Einstein quote?
That's from a letter Einstein wrote 1926 to Bohr. He wrote in German, that quote is a paraphrase in English.
"As mentioned above, Einstein's position underwent significant modifications over the course of the years. In the first stage, Einstein refused to accept quantum indeterminism [...]" -- indicating that, at some points, he had the wrong beliefs, right.
Aha. That phrase was supposed to support your viewpoint, not mine. "99% hard work" -- in contrary to intelligence.
I tried to find what he might have said that you were referring to, and stumbled upon that phrase, and since it was "your" quote, I didn't double check it.
But it's something else then, or maybe a misunderstanding somehow.
The "warring camps" framing is very overstated. Greenberg, who doesn't practice in this space, believes it to be a vital concern, but giants in the twin-study practitioner field freely cite GWAS results, including the EA studies.
A 2015 twin study result is basically a citation to the phlogiston era of polygenic population-wide genetic surveys. Heritability estimates of that vintage basically define away indirect genetic effects, which subsequent work appears to have very clearly established; the work now is on characterizing and bounding it, not asking whether it's real.
"Blog post looks biased" is not a good way to address this unless you actually practice in the space, like the author does, and are in conversation with other practitioners in the space, like the author is. You find lots of --- let's generally call them pop science writers --- knee-jerk responding to the new rounds of heritability numbers, but those same authors often wrote excitedly about how GWAS results would bolster their priors in the years before the results were published. It's worth paying attention to the backgrounds of the people writing about this stuff!
> "warring camps" framing is very overstated ... twin-study practitioner field freely cite GWAS results
Ok, good to know :-)
> the work now is on characterizing and bounding it
Using GWAS I suppose, ok.
> "Blog post looks biased" is not a good way ... but those same authors often wrote excitedly about how GWAS results would bolster their priors
Ok, yes I think I agree. ... Interesting
Thanks for keeping the original comment text. (I had a super quick glance at the blog post it mentioned, this one, right: https://theinfinitesimal.substack.com/p/book-review-eric-tur..., maybe will read at some point. "But Turkheimer sets a trap for GWAS Guys" (in the blog post) made me smile :-))
A few posts ago you were alluding to heritability in the 0.7-0.8 range, as a reason to dismiss the writings of Einstein, Newton, Descartes and Grothendieck.
Now you're at 0.44. If you discount for a mild EEA violation correction, you'd easily get to 0.3 or below — a figure which I personally find believable.
Just FYI, I don't belong to any "camp". These aren't camps but techniques and models. Intra-family GWAS provide underestimated lower bounds, twin studies provide wildly overestimated upper bounds. I don't care about the exact value, as long at it doesn't serve as a distraction from the (much more interesting!) story of how one can develop one's ability for mathematics.
In any case, IQ is a pretty boring construct, especially on the higher end where it's clearly uncalibrated. And it's a deep misunderstanding of mathematics to overestimate the role of "computational ability / short term memory / whatever" vs the particular psychological attitude and mental actions that are key to becoming better at math.
Now that the smoke screen has evaporated, can we please return to the main topic?
> A few posts ago you were alluding to heritability in the 0.7-0.8 range, as a reason to dismiss the writings of Einstein, Newton, Descartes and Grothendieck.
No. This is what I wrote:
"Back when they were active, intelligence, IQ tests and the heritability of intelligence hadn't been well studied. They didn't have enough information, like we do today: ... twin studies ..."
And now that changes to: "like we do today: ... GWAS (and twin studies) ...". The precise numbers were not the point.
> you'd easily get to 0.3 or below — a figure which I personally find believable
That's interesting. I thought you were closer to zero. Well, 0.3 or 0.7 or 0.2 -- it's a little bit all the same to me, as long as it's not 0 or 0.0001.
> I don't care about the exact value
Ok, makes sense :-)
> as long at it doesn't serve as a distraction
Aha, so that's why you didn't like 0.7 or 0.8 and reacted to it. Yes that's maybe a bit depressingly high numbers, in a way.
And I don't like 0 or close to 0 because that'd indicate that this animal species was "stuck".
> ... how one can develop one's ability for mathematics ... psychological attitude and mental actions that are key to becoming better at math
Yes, to becoming better. If you have time, I wonder what's the level of maths you think most people on the planet can reach? If everyone had the right encouragement, time and attitude.
- High school maths in economy and finance programs? (needed for example for accounting and running one's own business)
- The most advanced maths classes in high school if you study natural sciences?
- Technical mathematics or theoretical physics a few years at university?
- General theory of relativity?
I'm wondering if you're saying that just as long as someone starts early enough, they can reach the highest levels?
But then what about today's topic:
California's most neglected group of students: the gifted ones
> In other words: the people who run the mathematical 100m in under a second don't think it's because of their genes.
Sure they don't. Most extremely successful people (want to) think that the main reason of their success is their commitment and hard work. It runs completely contrary to the findings of modern biology and psychology, most of our intellectual potential at adulthood is genetic.
The floor and ceiling you will operate on in your life is decided the moment of chromosomal crossover.
> Most extremely successful people (want to) think that the main reason of their success is their commitment and hard work
I suppose that makes sense from their own personal perspectives (but that doesn't make them right), in that they had to put in lots of time and work, but didn't do anything to become bright people.
> The floor and ceiling you will operate on in your life
Interesting that what you wrote got downvoted. Lots of flat-earthers here? (figuratively speaking)
> Interesting that what you wrote got downvoted. Lots of flat-earthers here? (figuratively speaking)
I call it secular creationism - basically humans are special beings to which the rules and laws of biology (evolution and natural selection) do not apply fully.
And people with a liberal disposition who pride themselves as rational thinkers quickly switch off that rationality when it comes to natural differences between humans especially when those differences are in cognitive abilities.
So, for starters: you don't have any evidence, if I understood it properly. None whatsoever. That's really not the basis for arguing "become 1000x better." If only because your operationalization is missing. If you can't measure someone math's skills, how can you say they can become 1000x better? I think the whole article manages not to even speak about what "math" actually is supposed to be. Symbol manipulation according to axioms?
Your starting point is the way elite mathematicians think about themselves. But people don't understand themselves. They don't understand their own motivations, their own capabilities, their own logic. You know who are best at explaining what/how other people think? Average people. Hence the success of mediocrity in certain types of quizzes and politics.
I'm sure you're right about the mixture of logic and intuition. I've had the thought myself, mainly about designing systems, but there is some analogy: you've got to "see through" the way from the top to the bottom, how it connects, and then fill the layers in between. But that intuition is about a very, very specific domain. And it's not given that is a priori equally distributed. More likely than not, it's isn't.
Your whole argument then is based in naive psychology. E.g., this
> What can someone gain by improving their mathematical thinking?
> Joy, clarity and self-confidence.
> Children do this all the time. That’s why they learn so fast.
Are there no other reasons children learn so fast? It's not even given that joy and clarity makes children learn faster. What is known is that children do learn fast under pressure. Have you seen the skills of child soldiers? It's amazing, but it comes of course at great cost. But they did learn. Children pick up languages at a relatively high speed (note: learning a new language is still very well possible at later ages, certainly until middle age), but that's got nothing to do with joy, clarity and self-confidence. They also do it under the dreariest of circumstances.
So I'd say: your argument, or at least the quanta article, is at odds with common sense, and with psychological research, and doesn't provide concrete evidence.
You might have ideas for teaching maths better. But beware there's a long tradition of people who've tried to improve the maths curriculum, and basically all failed.
I'll give you one more point for thought (if you ever read this): intuition can also be a negative. I've practiced with my daughter for her unprepared math exam (she dropped it at one point, and then wanted to have it on her grade list anyway). One thing that I clearly remember, and it's not just her, is that she had very weird ideas about the meaning of e.g. x, even in simple equations. They were nearly magical. It was hard to get her to treat x like she would treat any other term. At one point, she failed to see that e.g. 1/3 = x^-1 is easy to solve, even when she had written down 1/x = x^-1 right next to it. Her intuition blocked her logic. My conclusion is that it's certainly easy to frak up someone's understanding of maths, unless you're really teaching, tutoring and monitoring 1-on-1. There's no solution for maths but good teachers, and a lot of fast feedback. Quite an old lesson.
You don't need to be able to run 100m in less than 10 seconds. But almost everyone probably could run a marathon in three and a half hours. How many people do you think have actualized their physical potential, or how far is the average person removed from it?
If someone's smart enough to get into a psychology class they are smart enough to be thought basic undergrad math. It wasn't your teaching failure necessarily, but it was someone's teaching failure at some point.
Not everyone can play Rachmaninov like Lugansky or do math like Terence Tao, but there is absolutely no doubt that almost all people are magnitudes away from their latent potential in almost all domains. I'm fairly certain you could teach any average person how to play Rachmaninov decently. You could bring any person to a reasonably high mathematical level. You can get any person to lift a few hundred pounds.
Most people today read at a 7th grade level, can't do basic math, and are out of air after 3 flights of stairs. "Everyone can do everything" is maybe not literally right but directionally right given how utterly far removed we are from developing practically anyone's potential.
There's a difference between being able to memorize what a square root is and being able to do math - which to mathematicians means being able to organize a proof.
I've found that the people who most believe in math being a genetic ability are the ones who do not work in the symbolic world of modern math, but in the semantic world of whatever the field the math describes is.
Square roots are fundamental to (real and complex) analysis and to algebra (in the study of polynomials), so the two major branches of modern mathematics.
Just come on. The square root of 2 is the easiest example of an irrational number, this has been known since Ancient Greece. You can't compute distances in Euclidean spaces without the square root. "Solving equations by roots" is the bread and butter of algebra. Adjoining roots to a field is how you get Galois Theory. Several algorithms related to number theory have complexity O(sqrt(n)). And so on.
You chose an extremely poor example and now you're trying to die on that hill. Please don't die on that hill.
Are you an LLM? You brought up the point of mathematicians not knowing what a square root is yourself. Anyway, the square root is is so many levels below maths as done by mathematicians, it's laughable.
This is mostly correct. Working memory plays a huge component in grokking more complicated mathematical components, and IQ itself is separated into performance and verbal IQ (which together constitute your IQ score) and its demonstrably robust. Some people find this easier than others and that is OK.
I dont disagree with the premise that mathematical thinking can benefit anybody, but its absurd notion that everything abstract is teachable and learnable to all is a fantasy of a distinctly left-wing variety, who would have you believe that everything is just social conditioning and human beings dont differ from one-another.
Imagine our world was extremely similar to how it is now in any way you'd care to imagine, except two things were different.
1. Everyone (young, old, poor, rich) thinks that maths is interesting and fun and beautiful and important. Not important "to get a good job" or "to go to a good college" or "to be an impressive person", but rather important because it's fun and interesting. And maybe it also helps you think clearly and get a good job and all these practical things, but they're secondary to the tremendous beauty and wondrousness of the domain.
2. Everyone believes that barring actual brain injuries people can learn mathematics to a pretty high level. Not Ramanujan level, not Terrence Tao, not even a research mathematician at one of the smaller universities, but a level of extreme comfort, let's say a minimum level of being able to confidently ace the typical types of exams 17 and 18 year olds face to finish secondary school in various countries.
Would you claim that in that world - people think maths is great, and that anyone can learn it - we'd see similar levels of ability and enjoyment of mathematics?
My claim is that we don't live in "Math-World", as described above, but "Anti-Math-World". And further, that anyone suggesting things have to be the way they are in Anti-Math-World is not only wrong, but also fundamentally lacking imagination and courage.
Kids are told week in week out that maths is stupid, that they are stupid, that their parents themselves are stupid, that the parents hated maths, that the teachers are stupid, and then when they end up doing poorly, people say: "ahhh, some kids just aren't bright!"
Parents who like things like learning and maths and reading and so on, have kids that tend to like those things. And parents that don't, usually don't. Saying that this somehow tells us something concrete and inalterable about the nature of the human brain is preposterous.
It's a card that's used by grown-ups who are terrified by the idea that our education systems are fundamentally broken.
"Kids are told week in week out that maths is stupid, that they are stupid. …."
Come on, how often are kids exposed to such stupid talk? I suspect very infrequently.
My grandmother, who wasn't stupid by any means but who knew only basic arithmetic, would never have uttered such nonsense.
And I'd stress, like many of her generation and background, her knowledge of mathematics was minimal, if she'd been ask what calculus was she'd likely have been perplexed and probably have guessed it to be some kind of growth on one's foot.
I see it a lot on the internet, mostly I'm the young people places. People talk shit on math all the time, just like they do in person. Just slights and jabs that they've never needed the pythagorean theorem or to do an integral, and thus it was all wasted time and effort. You might just not hang around young people much, or at least their online congregations (i don't blame you). The idea that math education is dumb and useless is very much alive in the young adult to preteen tiktokified spaces online
In math classrooms filled with 30 students on average for 12 years? With usually all 30 of those students having mathematically illiterate parents who can't help with their homework?
Every student hears it enough for it to be a widespread sentiment. It spreads like an infection.
I think most people can become fairly skilled in useful fields if educated properly, and the people who can't are a small group that can be cared for. I agree that even in a better education system, people aren't all going to be equally skilled in the same fields, just that most people can contribute something of value.
> Or let's try other topics, e.g. music. Conservatory students study quite hard, but some are better than others, and a select few really shine. "Everyone is capable of playing Rachmaninov"? I don't think so.
Bad example, it's much more likely to create a musical prodigy by providing early and appropriate guidance. Of course this is not easy as it assumes already ideal teaching methods and adequate motivation to the youngling, but even those with some learning difficulties have the potential to excel. The subtypes of intellect required to play complex music and absord advanced abstract math subjects are quite different, former requiring strong short-term memory (sightreading) the latter fluid intelligence -I think almost everyone is familiar with these terms by now and knows that one can score high/low on certain subtypes of an IQ test affecting the total score-.
BTW IDK if the Rachmaninoff choice was deliberate to imply that even the most capable who lack the hand size won't be able to perform his works well yeah, but there are like 1000s of others composers accessible that the audiences appreciate even more. Attempting to equate music with sports in such manner is heavily Americanized and therefore completely absurd. Tons of great pianists who didn't have the hand size to interpret his most majestic works and of others. Tons of others who could but never bothered. There have been winners of large competitions who barely played any of his works during all stages of audition or generally music requiring immense bodily advantage. Besides, it's almost 100% not a hand size issue when there are 5 year old kids playing La Campanella with remarkable fluidity.
And even in this case this isn't even the point. Most conservatory alumni today are 100x skilled than the pianists of previous generations... yet they all sound the exact same, their playing lacks character/variability, deepness, elegance to the point where the composers ideas end up distorted. And those can be very skilled but just have poor understanding of the art, which is what music is, not the fast trills/runs, clean arpeggios, very strict metronomic pulse.
> So no, unless you've placed the bar for "mathetical skill" pretty low, or can show me proper evidence, I'm not going to believe it. "Everyone is capable of..." reeks of bullshit.
Well the vast majority of people in the Soviet Union were very math literate, regardless of what they ended up working as (although indeed most became engineers) and in quite advanced subjects. This is obviously a product of the extensive focus of primary and secondary education on the sciences back then.
So the point isn't to make everyone have PhD level math background and I heavily dislike the dork undertones/culture that everyone should love doing abstract math on their freetime or have to have some mathematical temperament' . But let's not go the other way and claim that those not coming close to achieving the knowledge those in the top % of the fields possess, they are chumps.
> the vast majority of people in the Soviet Union were very math literate
I doubt that.
> although indeed most became engineers
And that is demonstrably false.
Anyway, most of your argument boils down to: there's a bunch of people that can't do a certain task, there's a bunch that has mediocre skills, a few that are good, and a handful that's really good. There's no argument, just observation, not even related to effort, which is what this discussion is about.
And maths is no different from sports or music in that sense. Most people suck at math, and will always suck at it. The things described in the article are personal reflections of elite mathematicians. They have no bearing on development of knowledge and skills of us mortals, if only because those reflections have no truth value. It's all just "feel good" thoughts, no data, nothing provable, etc.
Yes, effort improves skill, but everyone has a limit, and the ones with the high limits we call talented.
> Most people suck at math, and will always suck at it.
is strictly US-centric.
> Anyway, most of your argument boils down to: there's a bunch of people that can't do a certain task, there's a bunch that has mediocre skills, a few that are good, and a handful that's really good. There's no argument, just observation, not even related to effort, which is what this discussion is about.
No, you came up with that cause you have a very poor understanding of what constitutes a good musician which, like any other typical HNer believes, is another LeetCode type of thing where the more problems like a good little monkey you can solve, the smarter you become. And I already stated that there are people striving in the arts, even more than the ones with the supposedly 'better' skills according to absurd and clueless standards you set, i.e. no, those who can't access specific repertoire easily are not people that can't do a certain task or a bunch that has mediocre skills.
> And maths is no different from sports or music in that sense.
Let me guess, you also think that if painters can't draw photorealistically they're not deserving the artist title and lack talent? Or that the opera is all about who can sing the highest note?
Anyone who lumps every discipline within one other like that without realizing they require completely different things to be considered successful at and believe everything boils down to some supposedly 'objective' absurd video-game like character strategy always serves to remind that the US today has nothing to offer other than hi-tech bombing technology and horrific subculture.
Nowhere did I deny the existence of some people having the innate ability to absorb skills faster and better than the others and of course this is an interdisciplinary fact. But it definitely doesn't hold the same weight for every single discipline for one to strive.
> If it's easy, then it means you already know this material, and you're wasting your time
I think that's also a trap. Even professional athletes spend a little bit of their time doing simple drills: shooting free throws, fielding fly balls, hitting easy groundstrokes.
Sometimes your daily work keeps up the "easy" skills, but if you haven't used a skill in a while, it's not a bad idea to do some easy reps before you try to combine it with other skills in difficult ways.
> If it's easy, then it means you already know this material, and you're wasting your time.
One thing I'm anticipating from LLM-based tutoring is an adaptive test that locates someone's frontier of knowledge, and plots an efficient route toward any capability goal through the required intermediate skills.
Trying to find the places where math starts getting difficult by skimming through textbooks takes too long; especially for those of us who were last in school decades ago.
>and plots an efficient route toward any capability goal through the required intermediate skills.
LLMs currently can't find efficient paths longer than 5 hops when given a simple itinerary. Expecting them to do anything but a tactical explanation of issues they have seen in training is extremely naive with something as high dimensional as math.
I am trying to stress pushing through these barriers with my kid right now. The second her brain encounters something beyond its current sphere she just shuts down.
I have heard it is the ego protecting itself by rejecting something outright rather than admitting you can't do it. It still happens to me all the time. My favorite technique was one I heard from a college professor. He starts reading while filling a notepad with sloppy notes, once a page is filled he just throws it away. He claimed it was the fastest way to "condition his brain to the problem space". More than the exercise I like the idea that your brain cannot even function in that space until it has been conditioned.
As a kid I was also terrible at maths, then later became obsessed with it as an adult because I didn't understand it, just like OP. It was the (second) best thing I've ever done! The world becomes a lot more interesting.
My best friend was like that. Couldn't see the practicality until he got bit by a geology and water science bug. He went from calling me to get help figuring out percentages to doing chemistry equations in his head because he "got" the applicability.
My brother's mom tutors math. One of her insights with a former student was that they were in need of forming some number sense. She started by walking them both out to the street: "how many tires are there on this street of parked cars?" The student, already flummoxed, started panic guessing. So she started with counting.
For times tables, have you developed any intuition around it? For me, times tables are rectangles composed of unit squares and that helps with my intuition. Modern Common Core standards in the US focuses a lot on exposing different mental models to students. And after seeing the same 4x6 enough times your brain will automatically associate that with its solution. Instead of calculating, it is memorized.
My brain doesn't require car tires, geology, or other practical needs: it likes puzzles. I struggle with medical stuff and I can feel my brain switching to meh-mode and hardly anything sticks. I don't know how many times I have been told about the different kinds of sugar and how your body uses that energy and I would still have to look it up.
> However I was unable to visual how 2/3 is more than 1/2 when 1/2 is half a pint, or half a glass.
Maybe visualize splitting a pint with a friend. If you split the pint into 2 equal parts and each of you gets 1 of those 2 parts you each get the same amount.
Then visualize splitting it instead into 3 equal parts. You get 1 of those parts and your buddy gets 2. There's no fractions there so it should be easier to visualize that your buddy got twice as much as you did.
Comparing those two visualizations might make it easier to see that someone who gets 2/3 of a pint gets more than someone who gets 1/2 of a pint.
What _is_ a fraction to you? How do you visualize it? I didn't calculate to decimal to compare the size of those fractions (I couldn't tell you intuitively if 5/7 is more than 9/13, I would have to convert the denominator or calculate the decimal).
For me, a progress bar or a pizza is the default. And because I cook rice daily and we were talking volume, my "progress bar" was like a measuring cup. Mentally, I can stand two measuring cups next one another, and filling one of two parts is less than filling two of three parts.
Maybe there are ways to be more aware of or insert ways to force the use of fractions in physical space. More cooking, more building, etc. The more comfortable you get the more intuition you should build
> I think our obsession with innate mathematical skill and genius is so detrimental to the growth mindset that you need to have in order to learn things.
Absolutely. There's also a pernicious idea that only young people can master complex maths or music. This is a self-fulfilling prophecy - why bother try if you're going to fail due to being old? Or perhaps it's an elitist psy-op, giving the children of wealthy parents further advantage because of course no-one can catch up.
I grow increasingly convinced that the difference in “verbal” and “mathematical” intelligence is in many ways a matter of presentation.
While it’s indisputable that terse symbolic formalisms have great utility, one can capture all the same information verbally.
This is perhaps most evident in formal logic. It’s not hard to imagine a restricted formalized subset of natural language that is amenable to mechanical manipulation that is isomorphic to say modal logic.
And finally, for logic at least, there is something of a third way. Diagrammatic logical systems such as Existential Graphs capture the full power of propositional, predicate, and modal logic in a way that is neither verbal nor conventionally symbolic.
Amazingly, I believe that today, with the myriad of tools available, anyone can advance in sciences like mathematics at their own pace by combining black-box and white-box approaches. Computers, in this context, could serve as your personal “Batcomputer” [1]. That said, I would always recommend engaging in social sciences with others, not working alone.
Who knows? You might also contribute meaningfully to these fields as you embrace your own unique path.
I took an online electronics tech course 15 years ago and what got me was my math skills were atrocious. Not shocking since like learning a new language or music use it or lose it is the obvious answer to why I sucked. I spent half my time re-learning math just so I could complete the course.
It's funny because I've had the opposite heuristic most of my line: the things I want to do most are whatever is hardest. This worked great for building my maths and physics skills and knowledge.
But when I started focusing on making money I've come to believe it's a bad heuristic for that purpose.
It is bad because it suffers from misattribution error, ultimately not leading to any solution and often making the situation worse. A downward spiral of misinterpreted signal
> ...my family kept pressuring me to attain real success, girls, money and car and i became a programmer.
As a child of the 80s and 90s, "getting girls as a programmer" made me snort. Nerds do seem to have it a bit better now; the money/financial security of software development helps. But as a whole, we developers are still less socially capable than our sales/hr/marketing counterparts
"A loser in societal view"... What does that objectively mean? That only reads like you had or have a low sense of self worth. It must've been your perceived definition of what society is because how could you have come to such a conclusion? I think I'd actually subconsciously tend more to viewing someone as "a loser" if they made such a statement because it comes off as self victimization (without an apparent explanation to an outside observer).
And what's the shtick about girls? What are and were you looking for, love and a genuine relationship or attention to compensate for something? Personally I think your values and personality are what matter most and personality is usually what people fall in love with. Though charisma can help a lot to get the ball rolling. Most of what it takes is to treat people normally and nicely and you will have as much of a chance to find love as most people.
Though respect from peers and attention from women ideally shouldn't be your driving force. I think curiosity and passion are much better driving forces that don't involve such external factors and possibilities for insecurities.
Your post reads as if it expresses a frustration and a sense of entitlement. You may not be intrinsically entitled to the things you think you are. Think about that for a bit and try to be rational.
I think he lives in or are from India, society and family expectations are different there, not his "fault".
@faangguyindia, I hope everything will be ok one day :-) Or maybe it already is? You wrote "was".
I might be wrong but I think if you (@faangguy) manage to create a life that makes you feel happy, the women will notice that you're happy, and that goes a long way. But you'll also need to be somewhere where there are some women around? (obviously) If you're in a FAANG in SF maybe for the moment that's not so easy
I assume OP is an Indian. And from what I've observed, Indian society is highly paternalistic and status-seeking in nature. Parents demand marriage and grand-children as soon as their offspring hit a certain age and success.
This just demonstrates that you dont understand how sexual selection works. For men, yes, aesthetic appearance is a considerable (main?) component in initial attraction, which is further tempered by compatible personality after that initial connection. For women, social value is the principle signifier, which is then tempered by facial symmetry, not demonstrating socially unacceptable habits and having sone degree of physical security, but the latter is the most variable across cultures.
I've been working a lot on my math skills lately (as an adult). A mindset I've had in the past is that "if it's hard, then that means you've hit your ceiling and you're wasting your time." But really, the opposite is true. If it's easy, then it means you already know this material, and you're wasting your time.