This man is the reason I want to study electrical engineering.
Is that appropriate? Would another discipline give me a better grounding in not just these techniques, but the mental foundations that made their discovery possible?
EE and CS are both going to be where the "rubber meets the road", or the application of these concepts, especially at the BS/MS level. Specifically in classes covering things like communication codecs, video/image processing, signal processing, and compression. If you're interested more in the foundations of these ideas, you really need to look more towards pure math. For instance, the beginning of every coding book I own starts with a review of abstract algebra, and lot of signal processing ideas are built on top of complex analysis.
You wouldn’t go wrong with electrical engineering if this is the stuff you like. However, I think most engineering and engineering-adjacent disciplines (basically STEM) will give you a similar set of tools to approach any problem. If what youre really after is the pioneering aspects of his work, consider a double degree in business/engineering. The problems businesses face are really just engineering problems in disguise. Since most people who have the desire and capability to be an engineer become engineers instead of businesspeople, there’s a dearth of engineering talent in most non-engineer roles. In my last role at a Fortune 500, my nickname was “The Wizard” because I was so good at translating business needs to computer workflows it seemed like magic to my coworkers. When I’d regale my successes to my engineer friends they’d just laugh. At my org, I was 1 of 1 who could solve these problems. At their firms, my friends were on teams of 20+ who could all do what I did in their sleep. They worked in a more competitive domain where magic was an every day occurrence, so their work product felt lackluster when compared to their peers.
Most engineering (certainly that I know) is based on linear algebra. But of course there is a lot to learn in that field, but covering the basics can help understand a lot of engineering maths.
Equations, differentiation, integration, partial equations, complex numbers, matrices, eigen vectors, correlation, Fourier transform, laplace transform. And probably others.
Is that appropriate? Would another discipline give me a better grounding in not just these techniques, but the mental foundations that made their discovery possible?