E = \frac{1}{2} m (\dot{q}^2 - \omega^2 q^2) + \int \Gamma (s) ds + \frac{\sum_{n=1}^{N} (T_{\text{amb}} - T_n) \cdot \text{W}_{\text{AR}}}{\sum_{i=1}^{N} \text{SP}_i \cdot \text{AU}_i}
E: Effective rate of innovation
m: Mass
q: State space coordinate
q': Time derivative of state space coordinate
ω: Frequency
Γ(s): Gamma function
T_amb : Ambient temperature
T_n : Individual temperature
WAR: Wins against replacement
SP_i: story points
AU_i: total active users
or in production:
function calculateInnovationRate(I) { const { a, b, c, d, e, f, g, h, i, j, k } = I; const L = 0.5 * a * (b * 2 - d * 2 * c * 2); const G = e.reduce((acc, x, idx) => acc + x * f[idx], 0); const N = h.reduce((acc, x, idx) => acc + (g - x) * i[idx], 0); const D = j.reduce((acc, x, idx) => acc + x * k[idx], 0);
return L + G + (N / D); }