dy = f'(x)dx is just a definition for notional convenience, primarily employed when doing u or u-v substitution. My point is that dx in single variable calculus is notation. It is not an intrinsic object. dx is an intrinsic object as a differential form on a smooth manifold. Of course, the real line R is a 1-manifold, so dx does have that meaning, but you need to understand what a differential form is to know that.
One doesn't necessarily need the full generality of smooth manifolds though. Harold Edwards' Advanced Calculus: A Differential Forms Approach and Advanced Calculus: A Geometric View teach differential forms for Euclidean manifolds.
dy = f'(x)dx is just a definition for notional convenience, primarily employed when doing u or u-v substitution. My point is that dx in single variable calculus is notation. It is not an intrinsic object. dx is an intrinsic object as a differential form on a smooth manifold. Of course, the real line R is a 1-manifold, so dx does have that meaning, but you need to understand what a differential form is to know that.
One doesn't necessarily need the full generality of smooth manifolds though. Harold Edwards' Advanced Calculus: A Differential Forms Approach and Advanced Calculus: A Geometric View teach differential forms for Euclidean manifolds.