Definitely. One of the primary benefits we get out of Spark is the ability to decouple storage and compute, and to very easily scale out the compute.
Our main Spark workload is pretty spiky. We have low load during most of the day, and very high load at certain times - either system-wide, or because a large customer triggered an expensive operation. Using Spark as our distributed query engine allows us to quickly spin up new worker nodes and process the high load in a timely manner. We can then downsize the cluster again to keep our compute spend in check.
And just to provide some context on our data size, here's an article about how we use Citus at Heap - https://www.citusdata.com/customers/heap . We store close to a petabyte of data in our distributed Citus cluster. However, we've found Spark to be significantly better at queries with large result sets - our Connect product syncs a lot of data from our internal storage to customers' warehouses.