Hacker News new | past | comments | ask | show | jobs | submit login

At work, I'm using PyO3 for a project that churns through a lot of data (step 1) and does some pattern mining (step 2). This is the second generation of the project and is on-demand compared with the large, batch project in Spark that it is replacing. The Rust+Python project has really good performance, and using Rust for the core logic is such a joy compared with Scala or Python that a lot of other pieces are written in.

Learning PyO3, I cobbled together a sample project[0] to demonstrate how some functionality works. It's a little outdated (uses PyO3 0.11.0 compared with the current 0.13.1) and doesn't show everything, but I think it's reasonably clear.

One thing I noticed is that passing very large data from Rust and into Python's memory space is a bit of a challenge. I haven't quite grokked who owns what when and how memory gets correctly dropped, but I think the issues I've had are with the amount of RAM used at any moment and not with any memory leaks.

[0] https://github.com/aeshirey/CheeseShop




Guidelines | FAQ | Lists | API | Security | Legal | Apply to YC | Contact

Search: