>Photons do not get a special "laser" tag added to them by physics.
I thought they kinda did. By being very similar wavelength and power, compared to normal light which has all sorts of wave lengths and power. This difference can mean certain rods/cones being stressed more than average and not triggering the sort of fatigue that normal light would cause.
Perhaps the best example of a similar concept, though not with lasers, is looking at a total solar eclipse right before or after the sun is fully eclipsed. There is a small period of time where extremely bright light makes it into our eyes, but not he frequencies that cause pain normally associated with looking at the sun. This means that our default defenses against looking at the sun don't kick in and doing permanent eye damage is extremely easy without feeling any pain as the damage is done.
I thought they kinda did. By being very similar wavelength and power, compared to normal light which has all sorts of wave lengths and power. This difference can mean certain rods/cones being stressed more than average and not triggering the sort of fatigue that normal light would cause.
Perhaps the best example of a similar concept, though not with lasers, is looking at a total solar eclipse right before or after the sun is fully eclipsed. There is a small period of time where extremely bright light makes it into our eyes, but not he frequencies that cause pain normally associated with looking at the sun. This means that our default defenses against looking at the sun don't kick in and doing permanent eye damage is extremely easy without feeling any pain as the damage is done.