Let the circles be positioned at points p1, p2, p3 with radii r1, r2, r3 respectively. Note that we can get a family of circles with the same exterior tangents by simultaneously inter/extra-polating the position and radius of two other circles. Solving for a radius of 0 gives the following position for the intersection of those the tangents of circles 1 and 2.
q3 = (r1 * p2 - r2 * p1) / (r1 - r2)
(with similar expression for q1 and q2). Using homogenous coordinates we get the following list for q1, q2, q3:
I studied it at the University, it was introduced after Pappo's theorem and other theorem demonstrated using Descriptive Feometry most of all.
On the other end it was a Projective Geometry course and at the end we used a lot the General Linear Group, in particular 4x4 matrices for bilinear forms, so it was like warming up with Geometry to arrive to the Algebra tools.