Hacker News new | past | comments | ask | show | jobs | submit login

The interpretation of the probability is the same as in frequentist statistics, except you're making statements about the model resulting from your assumptions and data, instead of some hypothetical experiment. I suppose the Bayesian approach is more about building the model whereas the frequentist approach is more about selecting the best model out of several.



>The interpretation of the probability is the same as in frequentist statistics

Not at all. Frequentists cannot define a probability on whether it will rain in a location on a given day. They will respond that such a probability is meaningless. Bayesians can, however, give a meaning to it.


True, but the way a Bayesianist (?) will assign meaning to it involves creating a model, based on some assumptions, which will return a probability. The Bayesian notion of probability is equivalent to the frequentist notion of probability for experiments done on that model. In that sense they are the same.




Guidelines | FAQ | Lists | API | Security | Legal | Apply to YC | Contact

Search: