I think pretty much every sophomore level microelectronics book starts at basic semiconductor physics, works that into pn junctions, then transistors, then amplifiers, then gates and sequential elements.
sedra & smith is widely considered an excellent recommendation, but on skimming it, it seems that it does not cover solid-state physics at all or even mention any quantum effects; madou does spend a few chapters on solid-state physics, and of course feynman covers elementary quantum mechanics quite comprehensively. sedra & smith does go into a lot more depth on some aspects of chip design than horowitz & hill or even camenzind. it gives the ebers–moll equation in table 6.2, just not by name, and describes the inner workings of transistors in considerably more detail than the other books
horowitz & hill, camenzind, and feynman are much better written than sedra & smith or madou. the quality of the writing in sedra & smith in particular is quite poor; it contradicts itself every few pages, and often says things that require great effort to interpret as a correct statement, at least in the 7th edition i'm looking at
horowitz & hill also have much nicer schematics than sedra & smith or, especially, camenzind
"False positives cause many promising detection technologies to be unworkable in practice. Attackers, we show, face this problem too. In deciding who to attack true positives are targets successfully attacked, while false positives are those that are attacked but yield nothing."
A typical choice is Sedra & Smith https://learninglink.oup.com/access/sedra8e
But there is no shortage of choices.